Research Category: Diabetes Management

Perspective: Potatoes, Quality Carbohydrates, and Dietary Patterns

Potatoes have long been a staple food in many cultures and cuisines, but they have gained a reputation as a low-quality carbohydrate source that should be avoided in the diet. Historically, this view has been justified by citing the glycemic index of potatoes as the main indicator of their quality. However, their nutrient composition should also be considered. The association of potatoes with energy-dense Western dietary patterns has also contributed to a perception that potatoes are inherently unhealthy. Although some studies have suggested an association between potato consumption and increased risk of health problems, such as type 2 diabetes, these associations may be confounded by fried potato intake and are strongest at intake levels higher than average consumption rates. Epidemiologic data suggest total potato intake is not a health risk in Eastern populations and can be consumed as part of a healthy diet. Furthermore, clinical trial data demonstrate that potatoes’ health impact, irrespective of preparation, is similar to legumes and comparable with refined grains, with few deleterious effects found. These findings highlight the importance of moving beyond the glycemic index and adopting a more nuanced evaluation of the epidemiologic data to better understand the health impact of potato intake. Ultimately, the negative reputation of potatoes stems from an overinterpretation of their glycemic index and association with unhealthy Western dietary patterns, as well as oversimplification of the epidemiologic data. By considering carbohydrate quality, it becomes clear that potatoes can be part of a healthy diet given the proper consideration.

Perspective: The Glycemic Index Falls Short as a Carbohydrate Food Quality Indicator to Improve Diet Quality

This perspective examines the utility of the glycemic index (GI) as a carbohydrate quality indicator to improve Dietary Guidelines for Americans (DGA) adherence and diet quality. Achieving affordable, high-quality dietary patterns can address multiple nutrition and health priorities. Carbohydrate-containing foods make important energy, macronutrient, micronutrient, phytochemical, and bioactive contributions to dietary patterns, thus improving carbohydrate food quality may improve diet quality. Following DGA guidance helps meet nutrient needs, achieve good health, and reduce risk for diet-related non-communicable diseases in healthy people, yet adherence by Americans is low. A simple indicator that identifies high-quality carbohydrate foods and improves food choice may improve DGA adherence, but there is no consensus on a definition. The GI is a measure of the ability of the available carbohydrate in a food to increase blood glucose. The GI is well established in research literature and popular resources, and some have called for including the GI on food labels and in food-based dietary guidelines. The GI has increased understanding about physiological responses to carbohydrate-containing foods, yet its role in food-based dietary guidance and diet quality is unresolved. A one-dimensional indicator like the GI runs the risk of being interpreted to mean foods are “good” or “bad,” and it does not characterize the multiple contributions of carbohydrate-containing foods to diet quality, including nutrient density, a core concept in the DGA. New ways to define and communicate carbohydrate food quality shown to help improve adherence to high-quality dietary patterns such as described in the DGA would benefit public health.

Potato Consumption and Risk of Cardio-Metabolic Diseases: Evidence Mapping of Observational Studies

Background: Recent systematic review of clinical trials concluded that there was no convincing evidence to suggest an association between potatoes and risk of cardio-metabolic diseases. Objective: Summarize observational study data related to potato intake and cardio-metabolic health outcomes in adults using evidence mapping to assess the need for a future systematic review. Methods: We searched MEDLINE®, Commonwealth Agricultural Bureau, and bibliographies for eligible observational studies published between 1946 and July 2020. Included studies evaluated potato intake in any form or as part of a dietary pattern with risk for cardio-metabolic diseases. Outcomes of interest included cardiovascular disease (CVD), cerebrovascular diseases, diabetes, hypertension, blood lipids, and body composition. Results: Of 121 eligible studies, 51 reported two different methods to quantify potato intake (30 studies quantified intake as either grams or serving; 20 studies reported times per week; one reported both methods) and 70 reported potato as part of a dietary pattern and compared higher vs. lower intake, linear change, or difference in potato intake among cases and controls. Studies that quantified potato intake as either grams or serving reported the following outcomes: diabetes (8 studies); cerebrovascular stroke (6 studies); five studies each for CVD, systolic and diastolic blood pressure, and hypertension; three studies each for body mass index, body weight, CVD mortality; two studies for myocardial infarction; and one study each for blood glucose, HOMA-IR, and blood lipids. Higher potato intake was associated with an increased risk for blood pressure and body weight, and the results of all other outcomes observed no association. Potato consumption as part of dietary pattern studies reported a negative association between fried form of potato and all or most cardio-metabolic risk factors and diseases. Conclusion: Evidence mapping found sufficient data on the association between potato intake and cardio-metabolic disease risk factors to warrant for a systematic review/meta-analysis of observational studies.

Effects of potato resistant starch intake on insulin sensitivity, related metabolic markers and appetite ratings in men and women at risk for type 2 diabetes: a pilot cross‐over randomised controlled trial

The intake of certain types of resistant starch (RS) has been associated in some studies with increased whole‐body insulin sensitivity. This randomised, cross‐over pilot trial evaluated the effect of consuming cooked, then chilled potatoes, a source of RS, compared to isoenergetic, carbohydrate (CHO)‐containing control foods, on insulin sensitivity and related markers. Nineteen adults with body mass index 27.0‐39.9 kg m−2 consumed 300 g day−1 RS‐enriched potatoes (approximately two potatoes; ~18 g RS) or CHO‐based control foods, as part of lunch, evening and snack meals, over a 24‐h period. After an overnight fast, insulin sensitivity, CHO metabolism markers, free fatty acids, breath hydrogen levels and appetite were assessed for up to 5 h after the intake of a standard breakfast. The primary endpoint was insulin sensitivity, assessed with the Matsuda index. P < 0.05 (one‐sided) was considered statistically significant. Insulin sensitivity was not significantly different between the potato and control conditions. The potato intervention resulted in higher postprandial breath hydrogen (P = 0.037), lower postprandial free fatty acid concentrations (P = 0.039) and lower fasting plasma glucose (P = 0.043) compared to the control condition. Fullness ratings were significantly lower after potato versus control (P = 0.002). No other significant effects were observed; however, there was a trend toward lower fasting insulin (P = 0.077) in the potato versus the control condition. The results of this pilot study suggest RS‐enriched potatoes may have a favourable impact on carbohydrate metabolism and support the view that additional research in a larger study sample is warranted.

Lower nocturnal blood glucose response to a potato-based mixed evening meal compared to rice in individuals with type 2 diabetes

Guidelines for reducing postprandial blood glucose concentrations include avoiding high glycemic index (GI) foods, such as white potatoes. However, GI testing is often undertaken in the morning with foods consumed in isolation by non-clinical cohorts. We investigated the impact of potato preparation and consumption as part of a mixed-evening meal on postprandial and nocturnal glycemic responses, and postprandial insulin response, in individuals with Type 2 Diabetes Mellitus (T2DM).  In a randomized, cross-over design, 24 males and females (age 58.3 ± 9.3 y; BMI: 31.7 ± 6.8 kg/m2) with T2DM (diet or metformin controlled) completed four experimental trials after consuming a standardized breakfast (25% daily energy intake (EI)) and lunch (35% EI). Dinner (40% EI) was consumed at 1800 h being either: 1) boiled potato (BOIL); 2) roasted potato (ROAST); 3) boiled potato cooled for 24 h (COOLED); or 4) basmati rice (CONTROL). Each meal contained 50% carbohydrate, 30% fat and 20% protein. Blood samples were collected prior to, immediately post meal and at 30-min intervals for a further 120 min. A continuous glucose monitor was worn to assess nocturnal interstitial glucose concentrations. No differences were detected in postprandial venous glucose area under the curve (iAUC) between CONTROL and all three potato conditions. Postprandial insulin iAUC was greater following COOLED compared to CONTROL (P = 0.003; 95% CI: 18.9-111.72 miU/mL). No significant differences between CONTROL and BOIL or ROAST were detected for postprandial insulin concentrations. All potato meals resulted in lower nocturnal glucose AUC than CONTROL (P < 0.001; 95% CI 4.15-15.67 mmol/L x h). Compared to an isoenergetic rice meal, boiled, roasted or boiled then cooled potato-based meals were not associated with unfavourable postprandial glucose responses or nocturnal glycemic control, and can be considered suitable for individuals with T2DM when consumed as part of a mixed-evening meal.

Chilled Potatoes Decrease Postprandial Glucose, Insulin, and Glucose-Dependent Insulinotropic Peptide Compared to Boiled Potatoes in Females with Elevated Fasting Glucose and Insulin

Resistant starch (RS) has been shown to improve postprandial glycemia and insulin sensitivity in adults with metabolic syndrome. RS is found naturally in potatoes, where the amount varies based on cooking method and serving temperature. Thirty females with a mean BMI of 32.8 ± 3.7 kg/m2, fasting glucose of 110.5 mg/dL, and insulin of 10.3 µIU/L, completed this randomized, crossover study. A quantity of 250 g of boiled (low RS) and baked then chilled (high RS) russet potatoes were consumed on two separate occasions. Glycemic (glucose and insulin) and incretin response, subjective satiety, and dietary intake were measured. Results showed that the chilled potato elicited significant reductions at 15 and 30 min in glucose (4.8% and 9.2%), insulin (25.8% and 22.6%), and glucose-dependent insulinotropic peptide (GIP) (41.1% and 37.6%), respectively. The area under the curve for insulin and GIP were significantly lower after the chilled potato, but no differences were seen in glucose, glucagon-like peptide-1, and peptide YY, or overall subjective satiety. A higher carbohydrate and glycemic index but lower fat diet was consumed 48-hours following the chilled potato than the boiled potato. This study demonstrates that consuming chilled potatoes higher in RS can positively impact the glycemic response in females with elevated fasting glucose and insulin.

Magnesium in Disease Prevention and Overall Health

Magnesium is the fourth most abundant mineral and the second most abundant intracellular divalent cation and has been recognized as a cofactor for >300 metabolic reactions in the body. Some of the processes in which magnesium is a cofactor include, but are not limited to, protein synthesis, cellular energy production and storage, reproduction, DNA and RNA synthesis, and stabilizing mitochondrial membranes. Magnesium also plays a critical role in nerve transmission, cardiac excitability, neuromuscular conduction, muscular contraction, vasomotor tone, blood pressure, and glucose and insulin metabolism. Because of magnesium’s many functions within the body, it plays a major role in disease prevention and overall health. Low levels of magnesium have been associated with a number of chronic diseases including migraine headaches, Alzheimer’s disease, cerebrovascular accident (stroke), hypertension, cardiovascular disease, and type 2 diabetes mellitus. Good food sources of magnesium include unrefined (whole) grains, spinach, nuts, legumes, and white potatoes (tubers). This review presents recent research in the areas of magnesium and chronic disease, with the goal of emphasizing magnesium’s role in disease prevention and overall health.